Question:
For all twice differentiable functions $f: \mathrm{R} \rightarrow \mathrm{R}$, with $f(0)=f(1)=f^{\prime}(0)=0$
Correct Option: 1
Solution:
$f(0)=f(1)=f^{\prime}(0)=0$
Apply Rolles theorem on $\mathrm{y}=f(\mathrm{x})$ in $\mathrm{x} \in[0,1]$
$f(0)=f(1)=0$
$\Rightarrow f^{\prime}(\alpha)=0$ where $\alpha \in(0,1)$
Now apply Rolles theorem on $\mathrm{y}=f^{\prime}(\mathrm{x})$
in $x \in[0, \alpha]$
$f^{\prime}(0)=f^{\prime}(\alpha)=0$ and $f^{\prime}(x)$ is continuous and differentiable
$\Rightarrow f^{\prime \prime}(\beta)=0$ for some,$\beta \in(0, \alpha) \in(0,1)$
$\Rightarrow f^{\prime \prime}(\mathrm{x})=0$ for some $\mathrm{x} \in(0,1)$