For all sets A and B,

Question:

For all sets A and B, (A – B) ∪ (A ∩ B) = A

Solution:

True

According to the question,

There are two sets A and B

To check: (A – B) ∪ (A ∩ B) = A is true or false

L.H.S = (A – B) ∪ (A ∩ B)

Since, A – B = A ∩ B’,

We get,

= (A ∩ B’) ∪ (A ∩ B)

Using distributive property of set:

We get,

(A ∩ B) ∪ (A ∩ C) = A ∩ (B ∪ C)

= A ∩ (B’ ∪ B)

= A ∩ U

= A

= R.H.S

Hence, the given statement “for all sets A and B, (A – B) ∪ (A ∩ B) = A” is true

Leave a comment