For a series LCR circuit with

Question:

For a series LCR circuit with $\mathrm{R}=100 \Omega$, $\mathrm{L}=0.5 \mathrm{mH}$ and $\mathrm{C}=0.1 \mathrm{pF}$ connected across $220 \mathrm{~V}-50 \mathrm{~Hz} \mathrm{AC}$ supply, the phase angle between current and supplied voltage and the nature of the circuit is :

  1. $0^{\circ}$, resistive circuit

  2. $\approx 90^{\circ}$, predominantly inductive circuit

  3. $0^{\circ}$, resonance circuit

  4. $\approx 90^{\circ}$, predominantly capacitive circuit


Correct Option: , 4

Solution:

$R=100 \Omega$

$\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}=50 \pi \times 10^{-3}$

$X_{C}=\frac{1}{\omega C}=\frac{10^{11}}{100 \pi}$

$X_{C} \gg X_{L}$

$\&\left|X_{C}-X_{L}\right|>>R$

Leave a comment