For a plane electromagnetic wave, the magnetic field at a point $x$ and time $t$ is
$\overrightarrow{\mathrm{B}}(\mathrm{x}, \mathrm{t})=\left[1.2 \times 10^{-7} \sin \left(0.5 \times 10^{3} \mathrm{x}+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{k}}\right] \mathrm{T}$
The instantaneous electric field $\overrightarrow{\mathrm{E}}$ corresponding to $\overrightarrow{\mathrm{B}}$ is: (speed of light $\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}$ )
Correct Option: , 2
$\overrightarrow{\mathrm{E}}$ and $\overrightarrow{\mathrm{B}}$ are perpendicular for $\mathrm{EM}$ wave
$\mathrm{E}_{0}=\mathrm{CB}_{0}$
$=3 \times 10^{8} \times 1.2 \times 10^{-7}$
$=36$
Having same phase
Propagation is along - $\mathrm{x}$-axis, $\overrightarrow{\mathrm{B}}$ is along z-axis hence $\overrightarrow{\mathrm{E}}$ must be along $\mathrm{y}$-axis.
So, option (2) is correct