Question: For a pacticle in uniform circular motion, the acceleration $\vec{a}$ at a point $P(R, \theta)$ on the circle of radius $R$ is (Here $\theta$ is measured from the $x$-axis).
$\frac{v^{2}}{R} \hat{i}+\frac{v^{2}}{R} \hat{j}$
$-\frac{\mathrm{v}^{2}}{\mathrm{R}} \cos \theta \hat{\mathrm{i}}+\frac{\mathrm{v}^{2}}{\mathrm{R}} \sin \theta \hat{\mathrm{j}}$
$-\frac{v^{2}}{R} \sin \theta \hat{i}+\frac{v^{2}}{R} \cos \theta \hat{j}$
$-\frac{\mathrm{v}^{2}}{\mathrm{R}} \cos \theta \hat{\mathrm{i}}-\frac{\mathrm{v}^{2}}{\mathrm{R}} \sin \theta \hat{\mathrm{j}}$
Correct Option: , 4
Solution: