Five numbers are in A.P., whose sum is 25 and product is 2520 . If one of these five numbers is $-\frac{1}{2}$, then the greatest number amongst them is:
Correct Option: , 4
Let 5 terms of A.P. be
$a-2 d, a-d, a, a+d, a+2 d$
Sum $=25 \Rightarrow 5 a=25 \Rightarrow a=5$
Product $=2520$
$(5-2 d)(5-d) 5(5+d)(5+2 d)=2520$
$\Rightarrow \quad\left(25-4 d^{2}\right)\left(25-d^{2}\right)=504$
$\Rightarrow \quad 625-100 d^{2}-25 d^{2}+4 d^{4}=504$
$\Rightarrow 4 d^{4}-125 d^{2}+625-504=0$
$\Rightarrow 4 d^{4}-125 d^{2}+121=0$
$\Rightarrow 4 d^{4}-121 d^{2}-4 d^{2}+121=0$
$\Rightarrow\left(d^{2}-1\right)\left(4 d^{2}-121\right)=0$
$\Rightarrow \quad d=\pm 1, d=\pm \frac{11}{2}$
$d=\pm 1$ and $d=-\frac{11}{2}$, does not give $\frac{-1}{2}$ as a term
$\therefore \quad d=\frac{11}{2}$
$\therefore \quad$ Largest term $=5+2 d=5+11=16$