Find x, if
(i) $\left(\frac{1}{4}\right)^{-4} \times\left(\frac{1}{4}\right)^{-8}=\left(\frac{1}{4}\right)^{-4 x}$
(ii) $\left(\frac{-1}{2}\right)^{-19} \times\left(\frac{-1}{2}\right)^{8}=\left(\frac{-1}{2}\right)^{-2 x+1}$
(iii) $\left(\frac{3}{2}\right)^{-3} \times\left(\frac{3}{2}\right)^{5}=\left(\frac{3}{2}\right)^{2 x+1}$
(iv) $\left(\frac{2}{5}\right)^{-3} \times\left(\frac{2}{5}\right)^{15}=\left(\frac{2}{5}\right)^{2+3 x}$
(v) $\left(\frac{5}{4}\right)^{-x} \div\left(\frac{5}{4}\right)^{-4}=\left(\frac{5}{4}\right)^{5}$
(vi) $\left(\frac{8}{3}\right)^{2 x+1} \times\left(\frac{8}{3}\right)^{5}=\left(\frac{8}{3}\right)^{x+2}$
(i) We have:
$\left(\frac{1}{4}\right)^{-4} \times\left(\frac{1}{4}\right)^{-8}=\left(\frac{1}{4}\right)^{-4 x}$
$\left(\frac{1}{4}\right)^{-12}=\left(\frac{1}{4}\right)^{-4 x} \quad\left(a^{m} \times a^{n}=a^{m+n}\right)$
$-12=-4 x$
$3=x$
$x=3$
(ii) We have:
$\left(\frac{-1}{2}\right)^{-19} \times\left(\frac{-1}{2}\right)^{8}=\left(\frac{-1}{2}\right)^{-2 x+1}$
$\left(\frac{-1}{2}\right)^{-11}=\left(\frac{-1}{2}\right)^{-2 x+1} \quad\left(a^{m} \times a^{n}=a^{m+n}\right)$
$-11=-2 x+1$
$-12=-2 x$
$6=x$
x = 6
(iii) We have:
$\left(\frac{3}{2}\right)^{-3} \times\left(\frac{3}{2}\right)^{5}=\left(\frac{3}{2}\right)^{2 x+1}$
$\left(\frac{3}{2}\right)^{2}=\left(\frac{3}{2}\right)^{2 x+1}$
$2=2 x+1$
$1=2 x$
$\frac{1}{2}=x$
x = 1/2
(iv) We have:
$\left(\frac{2}{5}\right)^{-3} \times\left(\frac{2}{5}\right)^{15}=\left(\frac{2}{5}\right)^{2+3 x}$
$\left(\frac{2}{5}\right)^{12}=\left(\frac{2}{5}\right)^{2+3 x}$
$12=2+3 x$
$10=3 x$
$\frac{10}{3}=x$
x = 10/3
(v) We have:
$\left(\frac{5}{4}\right)^{-x} \div\left(\frac{5}{4}\right)^{-4}=\left(\frac{5}{4}\right)^{5}$
$\left(\frac{5}{4}\right)^{-x+4}=\left(\frac{5}{4}\right)^{5}$
$-x+4=5$
$-x=1$
$x=-1$
x = −1
(vi) We have:
$\left(\frac{8}{3}\right)^{2 x+1} \times\left(\frac{8}{3}\right)^{5}=\left(\frac{8}{3}\right)^{x+2}$
$\left(\frac{8}{3}\right)^{2 x+6}=\left(\frac{8}{3}\right)^{x+2}$
$2 x+6=x+2$
$x=-4$
x = −4