Find x and y, if

Question:

Find x and y, if$2\left[\begin{array}{ll}1 & 3 \\ 0 & x\end{array}\right]+\left[\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right]$$=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$

Solution:

$2\left[\begin{array}{ll}1 & 3 \\ 0 & x\end{array}\right]+\left[\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$

$\Rightarrow\left[\begin{array}{ll}2 & 6 \\ 0 & 2 x\end{array}\right]+\left[\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$

$\Rightarrow\left[\begin{array}{lc}2+y & 6 \\ 1 & 2 x+2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$

Comparing the corresponding elements of these two matrices, we have:

$2+y=5$

$\Rightarrow y=3$

$2 x+2=8$

$\Rightarrow x=3$

$\therefore x=3$ and $y=3$

Leave a comment