Find values of k, if area of triangle is 4 square units whose vertices are
(i) (k, 0), (4, 0), (0, 2)
(ii) (−2, 0), (0, 4), (0, k)
(i)
If the area of a triangle with vertices $(k, 0),(4,0)$ and $(0,2)$ is 4 square units, then
$\Delta=\frac{1}{2} \mid k \quad 0 \quad 1$
$4 \quad 0 \quad 1$
$0 \quad 2 \quad 1 \mid$
$=\frac{1}{2}\{(2) \times \mid \mathrm{k} \quad 1$
$4 \quad 1 \mid\} \quad$ [Expanding along $\mathrm{C}_{2}$ ]
$=(\mathrm{k}-4)$
Since area is always $+$ ve, we take its absolute value, which is given as 4 square units.
$\Rightarrow(\mathrm{k}-4)=\pm 4$
$\Rightarrow(k-4)=4$ or $(k-4)=-4$
$\Rightarrow k-4=4$ or $k-4=-4$
$\Rightarrow k=8$ or $k=0$
$\Rightarrow k=8,0$
(ii)
If the area of a triangle with vertices $(-2,0)(0,4)$ and $(0, k)$ is 4 square units, then
$\Delta_{1}=\frac{1}{2} \mid-2 \quad 0 \quad 1$
$\begin{array}{lll}0 & 4 & 1 \\ 0 & \mathrm{k} & 1\end{array}$
$=\frac{1}{2}\{-2 \times \mid 41$
k $1 \mid\}$
[Expanding along $\mathrm{C}_{1}$ ]
$=-(4-\mathrm{k})$
Since area is always $+$ ve, we take its absolute value, which is given as 4 square units.
$\Rightarrow-(4-\mathrm{k})=\pm 4$
$\Rightarrow-(4-\mathrm{k})=\pm 4$
$\Rightarrow-(4-\mathrm{k})=4$ or $-(4-\mathrm{k})=-4$
$\Rightarrow \mathrm{k}=4+4$ or $\mathrm{k}=-4+4$
$\Rightarrow k=8$ or $\mathrm{k}=0$