Find values of k if area of triangle is 4 square units and vertices are
(i) $(k, 0),(4,0),(0,2)$
(ii) $(-2,0),(0,4),(0, k)$
We know that the area of a triangle whose vertices are (x1, y1), (x2, y2), and
(x3, y3) is the absolute value of the determinant (Δ), where
$\Delta=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$
It is given that the area of triangle is 4 square units.
$\therefore \Delta=\pm 4$
(i) The area of the triangle with vertices (k, 0), (4, 0), (0, 2) is given by the relation,
$\Delta=\frac{1}{2}\left|\begin{array}{lll}k & 0 & 1 \\ 4 & 0 & 1 \\ 0 & 2 & 1\end{array}\right|$
$=\frac{1}{2}[k(0-2)-0(4-0)+1(8-0)]$
$=\frac{1}{2}[-2 k+8]=-k+4$
$\therefore-K+4=\pm 4$
When $-k+4=-4, k=8$.
When $-k+4=4, k=0$
Hence, $k=0,8$.
(ii) The area of the triangle with vertices (−2, 0), (0, 4), (0, k) is given by the relation,
$\Delta=\frac{1}{2}\left|\begin{array}{ccc}-2 & 0 & 1 \\ 0 & 4 & 1 \\ 0 & k & 1\end{array}\right|$
$=\frac{1}{2}[-2(4-k)]$
$=k-4$
$\therefore k-4=\pm 4$
When $k-4=-4, k=0$.
When $k-4=4, k=8$.
Hence, $k=0,8$.