Question.
Find two numbers whose sum is 27 and product is 182.
Find two numbers whose sum is 27 and product is 182.
Solution:
Let one number be x, then second number = 27 – x
$x \times(27-x)=182$
$\Rightarrow 27 x-x^{2}=182$
$\Rightarrow x^{2}-27 x+182=0$
$\Rightarrow x^{2}-14 x-13 x+182=0$
$\Rightarrow x(x-14)-13(x-14)=0$
$\Rightarrow(x-13)(x-14)=0$
$\Rightarrow x=13$ or 14
$\Rightarrow 27 x=14$ or 13
Hence, the two marbles are 13 and 14 .
Let one number be x, then second number = 27 – x
$x \times(27-x)=182$
$\Rightarrow 27 x-x^{2}=182$
$\Rightarrow x^{2}-27 x+182=0$
$\Rightarrow x^{2}-14 x-13 x+182=0$
$\Rightarrow x(x-14)-13(x-14)=0$
$\Rightarrow(x-13)(x-14)=0$
$\Rightarrow x=13$ or 14
$\Rightarrow 27 x=14$ or 13
Hence, the two marbles are 13 and 14 .