Find three rational numbers lying between $\frac{3}{5}$ and $\frac{7}{8}$. How many rational numbers can be determined between these two numbers?
$x=\frac{3}{5}$ and $y=\frac{7}{8}$
n = 3
$d=\frac{(y-x)}{n+1}=\frac{\frac{7}{8}-\frac{3}{5}}{3+1}=\frac{11}{40} \times \frac{1}{4}=\frac{11}{160}$
Rational numbers between $x=\frac{3}{5}$ and $y=\frac{7}{8}$ will be
$(x+d),(x+2 d), \ldots,(x+n d)$
$\Rightarrow\left(\frac{3}{5}+\frac{11}{160}\right),\left(\frac{3}{5}+2 \times \frac{11}{160}\right),\left(\frac{3}{5}+3 \times \frac{11}{160}\right)$
$\Rightarrow\left(\frac{107}{160}\right),\left(\frac{118}{160}\right),\left(\frac{129}{160}\right)$
$\Rightarrow\left(\frac{107}{160}\right),\left(\frac{59}{80}\right),\left(\frac{129}{160}\right)$
There are infinitely many rational numbers between two given rational numbers.