Question:
Find three consecutive odd numbers whose sum is 147.
Solution:
Let the first odd number be $\mathrm{x}$.
Let the second odd number be $(\mathrm{x}+2)$.
Let the third odd number be $(\mathrm{x}+4)$.
$\therefore x+(x+2)+(x+4)=147$
$\Rightarrow x+x+2+x+4=147$
$\Rightarrow 3 x+6=147$
$\Rightarrow 3 x=147-6$
$\Rightarrow 3 x=141$
$\Rightarrow x=\frac{141}{3}=47$
Therefore, the first odd number is $47 .$
$S$ econd odd number $=(\mathrm{x}+2)=(47+2)=49$
$T$ hird odd number $=(\mathrm{x}+4)=(47+4)=51$