Question:
Find the zeros of the quadratic polynomial $5 x^{2}-4-8 x$ and verify the relationship between the zeros and the coefficients of the given polynomial.
Solution:
We have:
$f(x)=5 x^{2}-4-8 x$
$=5 x^{2}-8 x-4$
$=5 x^{2}-(10 x-2 x)-4$
$=5 x^{2}-10 x+2 x-4$
$=5 x(x-2)+2(x-2)$
$=(5 x+2)(x-2)$
$\therefore f(x)=0=>(5 x+2)(x-2)=0$
$=>5 x+2=0$ or $x-2=0$
$=>x=\frac{-2}{5}$ or $x=2$
So, the zeros of $f(x)$ are $\frac{-2}{5}$ and 2 .
Sum of the zeros $=\left(\frac{-2}{5}\right)+2=\frac{-2+10}{5}=\frac{8}{5}=\frac{-(\text { coefficient of } x)}{\left(\text { coefficient of } x^{2}\right)}$
Product of the zeros $=\left(\frac{-2}{5}\right) \times 2=\frac{-4}{5}=\frac{\text { constant term }}{\text { (coefficient of } x^{2} \text { ) }}$