Question:
Find the zeros of the quadratic polynomial $2 x^{2}-11 x+15$ and verify the relation between the zeros and the coefficients.
Solution:
We have:
$f(x)=2 x^{2}-11 x+15$
$=2 x^{2}-(6 x+5 x)+15$
$=2 x^{2}-6 x-5 x+15$
$=2 x(x-3)-5(x-3)$
$=(2 x-5)(x-3)$
$\therefore f(x)=0=>(2 x-5)(x-3)=0$
$=>2 x-5=0$ or $x-3=0$
$=>x=\frac{5}{2}$ or $x=3$
So, the zeroes of $f(x)$ are $\frac{5}{2}$ and 3 .
Sum of the zeroes $=\frac{5}{2}+3=\frac{5+6}{2}=\frac{11}{2}=\frac{-(\text { coefficient of } x)}{\left(\text { coefficient } t x^{2}\right)}$
Product of the zeroes $=\frac{5}{2} \times 3=\frac{15}{2}=\frac{\text { constant term }}{\text { (coefficient of } x^{2} \text { ) }}$