Question:
Find the zeros of the polynomial $x^{2}+x-p(p+1)$
Solution:
$f(x)=x^{2}+x-p(p+1)$
By adding and subtracting px, we get
$f(x)=x^{2}+p x+x-p x-p(p+1)$
$=x^{2}+(p+1) x-p x-p(p+1)$
$=x[x+(p+1)]-p[x+(p+1)]$
$=[x+(p+1)](x-p)$
$f(x)=0$
$\Rightarrow[x+(p+1)](x-p)=0$
$\Rightarrow[x+(p+1)]=0$ or $(x-p)=0$
$\Rightarrow x=-(p+1)$ or $x=p$
So, the zeros of f(x) are −(p + 1) and p.