Find the zeros of the following quadratic polynomials and verify the relationship between the zeros and the coefficients:
Question:
Find the zeros of the following quadratic polynomials and verify the relationship between the zeros and the coefficients:
$3 x^{2}-x-4$
Solution:
Let $f(x)=3 x^{2}-x-4$
To find the zeroes, we put $f(x)=0$
$\Rightarrow 3 x^{2}-x-4=0$
$\Rightarrow 3 x^{2}-4 x+3 x-4=0$
$\Rightarrow x(3 x-4)+1(3 x-4)=0$
$\Rightarrow(x+1)(3 x-4)=0$
$\Rightarrow(x+1)=0$ or $(3 x-4)=0$
$\Rightarrow x=-1, \frac{4}{3}$
Hence, all the zeroes of the polynomial $f(x)$ are $-1$ and $\frac{4}{3}$.
Now,
$f(-1)=3(-1)^{2}-(-1)-4$
$=3(1)+1-4$
$=3-3$
$=0$
$f\left(\frac{4}{3}\right)=3\left(\frac{4}{3}\right)^{2}-\frac{4}{3}-4$
$=3\left(\frac{16}{9}\right)-\frac{4}{3}-4$
$=\frac{16}{3}-\frac{4}{3}-4$
$=\frac{12}{3}-4$
$=4-4$
$=0$
Hence, the relationship between the zeros and the coefficients is verified.