Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients
Question:
Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients
$x^{2}+7 x+12$
Solution:
$x^{2}+7 x+12=0$
$\Rightarrow x^{2}+4 x+3 x+12=0$
$\Rightarrow x(x+4)+3(x+4)=0$
$\Rightarrow(x+4)(x+3)=0$
$\Rightarrow(x+4)=0$ or $(x+3)=0$
$\Rightarrow x=-4$ or $x=-3$
Sum of zeroes $=-4+(-3)=\frac{-7}{1}=\frac{-(\text { coefficient of } x)}{\text { (coefficient of } x^{2} \text { ) }}$
Product of zeroes $=(-4)(-3)=\frac{12}{1}=\frac{\text { constant term }}{\text { coefficient of } x^{2}}$