Find the zero of the polynomial:
(i) $p(x)=x-5$
(ii) $q(x)=x+4$
(iii) $r(x)=2 x+5$
(iv) $f(x)=3 x+1$
(v) $g(x)=5-4 x$
(vi) $h(x)=6 x-2$
(vii) $p(x)=a x, a \neq 0$
(viii) $q(x)=4 x$
(i) $p(x)=0 \Rightarrow x-5=0$
$\Rightarrow x=5$
Hence, 5 is the zero of the polynomial $p(x)$.
(ii) $q(x)=0 \Rightarrow x+4=0$
$\Rightarrow x=-4$
Hence, $-4$ is the zero of the polynomial $q(x)$.
(iii) $r(x)=0 \Rightarrow 2 x+5=0$
$\Rightarrow t=\frac{-5}{2}$
Hence, $\frac{-5}{2}$ is the zero of the polynomial $p(t)$.
(iv) $f(x)=0 \Rightarrow 3 x+1=0$
$\Rightarrow x=-\frac{1}{3}$
Hence, $-\frac{1}{3}$ is the zero of the polynomial $f(x)$.
(v) $g(x)=0 \Rightarrow 5-4 x=0$
$\Rightarrow x=\frac{5}{4}$
Hence, $\frac{5}{4}$ is the zero of the polynomial $g(x)$.
(vi) $h(x)=0 \Rightarrow 6 x-2=0$
$\Rightarrow x=\frac{2}{6}=\frac{1}{3}$
Hence, $\frac{1}{3}$ is the zero of the polynomial $h(x)$.
(vii) $p(x)=0 \Rightarrow a x=0$
$\Rightarrow x=0$
Hence, 0 is the zero of the polynomial $p(x)$.
(viii) $q(x)=0 \Rightarrow 4 x=0$
$\Rightarrow x=0$
Hence, 0 is the zero of the polynomial $q(x)$.