Question.
Find the volume of a sphere whose radius is
(i) $7 \mathrm{~cm}$
(ii) $0.63 \mathrm{~m}$
$\left[\right.$ Assume $\left.\pi=\frac{22}{7}\right]$
Find the volume of a sphere whose radius is
(i) $7 \mathrm{~cm}$
(ii) $0.63 \mathrm{~m}$
$\left[\right.$ Assume $\left.\pi=\frac{22}{7}\right]$
Solution:
(i) Radius of sphere $=7 \mathrm{~cm}$
Volume of sphere $=\frac{4}{3} \pi r^{3}$
$=\left[\frac{4}{3} \times \frac{22}{7} \times(7)^{3}\right] \mathrm{cm}^{3}$
$=\left(\frac{4312}{3}\right) \mathrm{cm}^{3}$
$=1437 \frac{1}{3} \mathrm{~cm}^{3}$
Therefore, the volume of the sphere is $1437 \frac{1}{3} \mathrm{~cm}^{3}$.
(ii) Radius of sphere $=0.63 \mathrm{~m}$
Volume of sphere $=\frac{4}{3} \pi r^{3}$
$=\left[\frac{4}{3} \times \frac{22}{7} \times(0.63)^{3}\right] \mathrm{m}^{3}$
$=1.0478 \mathrm{~m}^{3}$
Therefore, the volume of the sphere is $1.05 \mathrm{~m}^{3}$ (approximately).
(i) Radius of sphere $=7 \mathrm{~cm}$
Volume of sphere $=\frac{4}{3} \pi r^{3}$
$=\left[\frac{4}{3} \times \frac{22}{7} \times(7)^{3}\right] \mathrm{cm}^{3}$
$=\left(\frac{4312}{3}\right) \mathrm{cm}^{3}$
$=1437 \frac{1}{3} \mathrm{~cm}^{3}$
Therefore, the volume of the sphere is $1437 \frac{1}{3} \mathrm{~cm}^{3}$.
(ii) Radius of sphere $=0.63 \mathrm{~m}$
Volume of sphere $=\frac{4}{3} \pi r^{3}$
$=\left[\frac{4}{3} \times \frac{22}{7} \times(0.63)^{3}\right] \mathrm{m}^{3}$
$=1.0478 \mathrm{~m}^{3}$
Therefore, the volume of the sphere is $1.05 \mathrm{~m}^{3}$ (approximately).