Find the volume of a solid in the form of a right circular cylinder with hemi-spherical ends whose total length is 2.7 m and the diameter of each hemi-spherical end is 0.7 m.
Radius of hemispherical ends = radius of cylinder
$=\frac{1}{2} \times 0.7$
$=\frac{7}{20} \mathrm{~m}$
Total length = 2.7 m.
Height of cylinder
$=2.7-2 \times \frac{7}{20}$
$=2 \mathrm{~m}$
Volume of two hemispheres
$=2\left(\frac{2}{3} \pi r^{3}\right)$
$=\frac{4}{3} \pi r^{3}$
$=\frac{4}{3} \times \frac{22}{7} \times\left(\frac{7}{20}\right)^{3}$
$=\frac{4}{3} \times \frac{22}{7} \times \frac{343}{800}$
$=0.1797 \mathrm{~m}^{3}$
Volume of cylinders
$=\pi r^{2} h$
$=\frac{22}{7} \times\left(\frac{7}{20}\right)^{2} \times 2$
$=0.77 \mathrm{~m}^{2}$
Hence,
Volume of solid = 0.1797+0.77 = 0.95 m3