Find the volume, curved surface area and total surface area of each of the cylinders whose dimensions are:
Find the volume, curved surface area and total surface area of each of the cylinders whose dimensions are:
(i) radius of the base = 7 cm and height = 50 cm
(ii) radius of the base = 5.6 m and height = 1.25 m
(iii) radius of the base = 14 dm and height = 15 m
Volume of a cylinder $=\pi r^{2} h$
Lateral surface $=2 \pi r h$
Total surface area $=2 \pi r(h+r)$
(i) Base radius $=7 \mathrm{~cm}$; height $=50 \mathrm{~cm}$
Now, we have the following:
Volume $=\frac{22}{7} \times 7 \times 7 \times 50=7700 \mathrm{~cm}^{3}$
Lateral surface area $=2 \pi r h=2 \times \frac{22}{7} \times 7 \times 50=2200 \mathrm{~cm}^{2}$
Total surface area $=2 \pi r(h+r)=2 \times \frac{22}{7} \times 7(50+7)=2508 \mathrm{~cm}^{2}$
(ii) Base radius $=5.6 \mathrm{~m}$; height $=1.25 \mathrm{~m}$
Now, we have the following:
Volume $=\frac{22}{7} \times 5.6 \times 5.6 \times 1.25=123.2 \mathrm{~m}^{3}$ Lateral surface area $=2 \pi r h=2 \times \frac{22}{7} \times 5.6 \times 1.25=44 \mathrm{~m}^{2}$ Total surface area $=2 \pi r(h+r)=2 \times \frac{22}{7} \times 5.6(1.25+5.6)=241.12 \mathrm{~m}^{2}$
(iii) Base radius $=14 \mathrm{dm}=1.4 \mathrm{~m}$, height $=15 \mathrm{~m}$
Now, we have the following:
Volume $=\frac{22}{7} \times 1.4 \times 1.4 \times 15=92.4 \mathrm{~m}^{3}$
Lateral surface area $=2 \pi r h=2 \times \frac{22}{7} \times 1.4 \times 15=132 \mathrm{~m}^{2}$
Total surface area $=2 \pi r(h+r)=2 \times \frac{22}{7} \times 1.4(15+1.4)=144.32 \mathrm{~cm}^{2}$