Find the values of x in each of the following
We have
$2^{5 x} \div 2^{x}=\sqrt[5]{\left(2^{20}\right)}$
$=\frac{2^{5 x}}{2^{x}}=\left(2^{20}\right)^{\frac{1}{5}}$
$=2^{5 x-x}=2^{20 \times \frac{1}{5}}$
$=2^{4 x}=2^{4}$
= 4x = 4 [On equating exponent]
x = 1
Hence the value of x is 1
(ii) $\left(2^{3}\right)^{4}=\left(2^{2}\right)^{x}$
We have
$\left(2^{3}\right)^{4}=\left(2^{2}\right)^{x}$
$=2^{3 \times 4}=2^{2 \times x}$
12 = 2x
2x = 12 [On equating exponents]
x = 6
Hence the value of x is 6
(iii) $(3 / 5)^{x}(5 / 3)^{2 x}=125 / 27$
We have
$(3 / 5)^{x}(5 / 3)^{2 x}=125 / 27$
$\Rightarrow \frac{(3)^{x}}{(5)^{x}} \frac{(5)^{2 x}}{(3)^{2 x}}=\frac{5^{3}}{3^{3}}$
$\Rightarrow 5^{2 x-x} / 3^{2 x-x}=5^{3} / 3^{3}$
$\Rightarrow 5^{x} / 3^{x}=5^{3} / 3^{3}$
$\Rightarrow(5 / 3)^{x}=(5 / 3)^{3}$
x = 3 [on equating exponents]
Hence the value of x is 3
(iv) $5^{x-2} \times 3^{2 x-3}=135$
We have,
$5^{x-2} \times 3^{2 x-3}=135$
$\Rightarrow 5^{x-2} \times 3^{2 x-3}=5 \times 27$
$\Rightarrow 5^{x-2} \times 3^{2 x-3}=5^{1} \times 3^{3}$
⇒ x − 2 = 1, 2x − 3 = 3 [On equating exponents]
⇒ x = 2 + 1, 2x = 3 + 3
⇒ x = 3, 2x = 6
⇒ x = 3
Hence the value of x is 3
(v) $2^{x-7} \times 5^{x-4}=1250$
We have
$2^{x-7} \times 5^{x-4}=1250$
$\Rightarrow 2^{x-7} \times 5^{x-4}=2 \times 625$
$\Rightarrow 2^{x-7} \times 5^{x-4}=2 \times 5^{4}$
⇒ x − 7 = 1
⇒ x = 8, x − 4 = 4
⇒ x = 8
Hence the value of x is 8
(vi) $(\sqrt[3]{4})^{2 x+\frac{1}{2}}=\frac{1}{32}$
$\left(4^{\frac{1}{3}}\right)^{2 x+\frac{1}{2}}=\frac{1}{32}$
$(4)^{\frac{1}{3}\left(2 x+\frac{1}{2}\right)}=\frac{1}{32}$
$(4)^{\frac{1}{3}(2 x+12)}=\frac{1}{2^{5}}$
$(4)^{\frac{2}{3} x+\frac{1}{6}}=\frac{1}{2^{5}}$
$\left(2^{2}\right)^{\frac{2}{3} x+\frac{1}{6}}=\frac{1}{2^{5}}$
(2) $^{2\left(\frac{2}{3} x+\frac{1}{6}\right)}=\frac{1}{2^{5}}$
$(2)^{\frac{4}{3} x+\frac{2}{6}}=\frac{1}{2^{5}}$
$(2)^{\frac{4}{3} x+\frac{1}{3}}=2^{-5}$
$\frac{4}{3} x+\frac{1}{3}=-5$
4x + 1 = -15
4x = -15 - 1
4x = -16
x = (-16)/4
x = - 4
Hence the value of x is 4
(vii) $5^{2 x+3}=1$
$5^{2 x+3}=1 \times 5^{0}$
2x + 3 = 0 [By equating exponents]
2x = −3
x = −3/2
Hence the value of x is −3/2
(viii) $(13)^{\sqrt{x}}=4^{4}-3^{4}-6$
$(13)^{\sqrt{x}}=256-81-6$
$(13)^{\sqrt{x}}=256-87$
$(13)^{\sqrt{x}}=169$
$(13)^{\sqrt{x}}=13^{2}$
$\sqrt{x}=2$ [By equating exponents]
$(\sqrt{x})^{2}=(2)^{2}$
x = 4
Hence the value of x is 4
(ix) $\left(\sqrt{\frac{3}{5}}\right)^{x+1}=\frac{125}{27}$
$\left(\sqrt{\frac{3}{5}}\right)^{x+1}=\frac{5^{3}}{3^{3}}$
$\left(\sqrt{\frac{3}{5}}\right)^{x+1}=\left(\frac{5}{3}\right)^{3}$
$\left(\sqrt{\frac{3}{5}}\right)^{x+1}=\left(\frac{3}{5}\right)^{-3}$
$\left(\frac{3}{5}\right)^{\frac{1}{2}(x+1)}=\left(\frac{3}{5}\right)^{-3}$
$\frac{1}{2}(x+1)=-3$
x + 1 = - 6
x = - 6 - 1
x = -7
Hence the value of x is 7