(i) Find the values of $k$ for which the quadratic equation $(3 k+1) x^{2}+2(k+1) x+1=0$ has real and equal roots.
(ii) Find the value of $k$ for which the equation $x^{2}+k(2 x+k-1)+2=0$ has real and equal roots.
(i)
The given equation is $(3 k+1) x^{2}+2(k+1) x+1=0$.
This is of the form $a x^{2}+b x+c=0$, where $a=3 k+1, b=2(k+1)$ and $c=1$.
$\therefore D=b^{2}-4 a c$
$=[2(k+1)]^{2}-4 \times(3 k+1) \times 1$
$=4\left(k^{2}+2 k+1\right)-4(3 k+1)$
$=4 k^{2}+8 k+4-12 k-4$
$=4 k^{2}-4 k$
The given equation will have real and equal roots if D = 0.
$\therefore 4 k^{2}-4 k=0$
$\Rightarrow 4 k(k-1)=0$
$\Rightarrow k=0$ or $k-1=0$
$\Rightarrow k=0$ or $k=1$
Hence, 0 and 1 are the required values of k.
(ii)
$x^{2}+k(2 x+k-1)+2=0$
$x^{2}+2 k x+k^{2}-k+2=0$
For real and equal roots $D=0$
$D=b^{2}-4 a c=0$
$D=(2 k)^{2}-4(1)\left(k^{2}-k+2\right)$
$D=4 k^{2}-4 k^{2}+4 k-8=0$
$\Rightarrow 4 k-8=0$
$\Rightarrow k=2$