Question:
Find the values of $b$ for which the function $f(x)=\sin x-b x+c$ is a decreasing function on $R$ ?
Solution:
We have,
$f(x)=\sin x-b x+c$
$f^{\prime}(x)=\cos x-b$
Given that $f(x)$ is on decreasing function on $R$
$\therefore \mathrm{f}^{\prime}(\mathrm{x})<0$ for all $\mathrm{x} \in \mathrm{R}$
$\Rightarrow \cos x-b>0$ for $a l l x \in R$
$\Rightarrow b<\cos x$ for all $x \in R$
But the last value of $\cos x$ in 1
$\therefore \mathrm{b} \geq 1$