Find the values of a so that the function
$f(x)=\left\{\begin{array}{cl}a x+5, & \text { if } x \leq 2 \\ x-1, & \text { if } x>2\end{array}\right.$ is continuous at $x=2$
Given:
$f(x)=\left\{\begin{array}{l}a x+5, \text { if } x \leq 2 \\ x-1, \text { if } x>2\end{array}\right.$
We observe
$(\mathrm{LHL}$ at $x=2)=\lim _{\mathrm{x} \rightarrow 2^{-}} f(x)=\lim _{h \rightarrow 0} f(2-h)=\lim _{h \rightarrow 0} a(2-h)+5=2 a+5$
$(\mathrm{RHL}$ at $x=2)=\lim _{\mathrm{x} \rightarrow 2^{+}} f(x)=\lim _{h \rightarrow 0} f(2+h)=\lim _{h \rightarrow 0}(2+h-1)=1$
And, $f(2)=a(2)+5=2 a+5$
Since $f(x)$ is continuous at $x=2$, we have
$\lim _{\mathrm{x} \rightarrow 2^{-}} f(x)=\lim _{\mathrm{x} \rightarrow 2^{+}} f(x)=f(2)$
$\Rightarrow 2 a+5=1$
$\Rightarrow 2 a=-4$
$\Rightarrow a=-2$