Find the values of a, b, c and d from the following equations:
$\left[\begin{array}{cc}2 a+b & a-2 b \\ 5 c-d & 4 c+3 d\end{array}\right]=\left[\begin{array}{cc}4 & -3 \\ 11 & 24\end{array}\right]$
Since all the corresponding elements of a matrix are equal,
$\left[\begin{array}{cc}2 a+b & a-2 b \\ 5 c-d & 4 c+3 d\end{array}\right]=\left[\begin{array}{cc}4 & -3 \\ 11 & 24\end{array}\right]$
$\Rightarrow 2 a+b=4$
$\Rightarrow b=4-2 a$ ....(1)
$a-2 b=-3$ ....(2)
Putting the value of $b$ in eq. (2), we get
$a-2(4-2 a)=-3$
$\Rightarrow a-8+4 a=-3$
$\Rightarrow 5 a-8=-3$
$\Rightarrow 5 a=-3+8$
$\Rightarrow 5 a=5$
$\Rightarrow a=1$
Putting the value of $a$ in eq. $(1)$, we get
$b=4-2(1)$
$\Rightarrow b=4-2$
$\Rightarrow b=2$
$5 c-d=11$
$\Rightarrow 5 c-11=d$ .....(3)
$4 c+3 d=24$ .....(4)
Putting the value of $d$ in eq. (4), we get
$4 c+3(5 c-11)=24$
$\Rightarrow 4 c+15 c-33=24$
$\Rightarrow 19 c-33=24$
$\Rightarrow 19 c=24+33$
$\Rightarrow 19 c=57$
$\Rightarrow c=\frac{57}{19}=3$
Putting the value of $c$ in eq. (3), we get
$5(3)-11=d$
$\Rightarrow 15-11=d$
$\Rightarrow d=4$
$\therefore a=1, b=2, c=3$ and $d=4$