Find the values of $a$ and $b$ so that the polynomial $\left(x^{3}-10 x^{2}+a x+b\right)$ is exactly divisible by $(x-1)$ as well as $(x-2)$.
Let:
$f(x)=x^{3}-10 x^{2}+a x+b$
Now,
$x-1=0 \Rightarrow x=1$
By the factor theorem, we can say:
$f(x)$ will be exactly divisible by $(x-1)$ if $f(1)=0$.
Thus, we have:
$f(1)=1^{3}-10 \times 1^{2}+a \times 1+b$
$=(1-10+a+b)$
$=-9+a+b$
$\therefore f(1)=0 \Rightarrow a+b=9 \quad \ldots(1)$
Also,
$x-2=0 \Rightarrow x=2$
By the factor theorem, we can say:
$f(x)$ will be exactly divisible by $(x-2)$ if $f(2)=0$.
Thus, we have:
$f(2)=2^{3}-10 \times 2^{2}+a \times 2+b$
$=(8-40+2 a+b)$
$=-32+2 a+b$
$\therefore f(2)=0 \Rightarrow 2 a+b=32 \quad \ldots(2)$
Subtracting (1) from (2), we get:
$a=23$
Putting the value of $a$, we get the value of $b$, i.e., $-14$.
$\therefore a=23$ and $b=-14$