Find the values of $a$ and $b$, if $x^{2}-4$ is a factor of $a x^{4}+2 x^{3}-3 x^{2}+b x-4$
Given, $f(x)=a x^{4}+2 x^{3}-3 x^{2}+b x-4$
$g(x)=x^{2}-4$
first we need to find the factors of g(x)
$\Rightarrow x^{2}-4$
$\Rightarrow x^{2}=4$
$\Rightarrow x=\sqrt{4}$
$\Rightarrow x=\pm 2$
(x - 2) and (x + 2) are the factors
By factor therorem if (x - 2) and (x + 2) are the factors of f(x) the result of f(2) and f(-2) should be zero
Let, x - 2 = 0
⟹ x = 2
Substitute the value of x in f(x)
$f(2)=a(2)^{4}+2(2)^{3}-3(2)^{2}+b(2)-4$
= 16a + 2(8) - 3(4) + 2b - 4
= 16a + 2b + 16 - 12 - 4
= 16a + 2b
Equate f(2) to zero
⟹ 16a + 2b = 0
⟹ 2(8a + b) = 0
⟹ 8a + b = 0 ..... 1
Let, x + 2 = 0
⟹ x = -2
Substitute the value of x in f(x)
$f(-2)=a(-2)^{4}+2(-2)^{3}-3(-2)^{2}+b(-2)-4$
= 16a + 2(-8) - 3(4) - 2b - 4
= 16a - 2b - 16 - 12 - 4
= 16a - 2b - 32
= 16a - 2b - 32
Equate f(2) to zero
⟹ 16a - 2b - 32 = 0
⟹ 2(8a - b) = 32
⟹ 8a - b = 16 .... 2
Solve equation 1 and 2
8a + b = 0
8a - b = 16
16a = 16
a = 1
substitute a value in eq 1
8(1) + b = 0
⟹ b = - 8
The values are a = 1 and b = - 8