Find the values of a and b for which the following system of equations has infinitely many solutions:
Find the values of a and b for which the following system of equations has infinitely many solutions:
(i) $(2 a-1) x-3 y=5$
$3 x+(b-2) y=3$
(ii) $2 x-(2 a+5) y=5$
$(2 b+1) x-9 y=15$
(iii) $(a-1) x+3 y=2$
$6 x+(1-2 b) y=6$
$(i v) 3 x+4 y=12$
$(a+b) x+2(a-b) y=5 a-1$
$(v) 2 x+3 y=7$
$(a-b) x+(a+b) y=3 a+b-2$
$(v i) 2 x+3 y-7=0$
$\quad(a-1) x+(a+1) y=(3 a-1)$
(vii) $2 x+3 y=7$
$\quad(a-1) x+(a+2) y=3 a$
$($ viii $) x+2 y=1$
$(a-b) x+(a+b) y=a+b-2$
$(i x) 2 x+3 y=7$
$2 a x+a y=28-b y$
(i) GIVEN:
$(2 a-1) x-3 y=5$
$3 x+(b-2) y=3$
To find: To determine for what value of k the system of equation has infinitely many solutions
We know that the system of equations
$a_{1} x+b_{1} y=c_{1}$
$a_{2} x+b_{2} y=c_{2}$
For infinitely many solution
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
Here
$\frac{2 a-1}{3}=\frac{3}{-(b-2)}=\frac{5}{3}$
Consider
$\frac{3}{-(b-2)}=\frac{5}{3}$
$-5 b+10=9$
$-5 b=-1$
$b=\frac{1}{5}$
Again consider
$\frac{2 a-1}{3}=\frac{5}{3}$
$2 a-1=5$
$2 a=6$
$a=3$
Hence for $a=3$ and $b=\frac{1}{5}$ the system of equation has infinitely many solution.
(11) GIVEN:
$2 x-(2 a+5) y=5$
$(2 b+1) x-9 y=15$
To find: To determine for what value of k the system of equation has infinitely many solutions
We know that the system of equations
$a_{1} x+b_{1} y=c_{1}$
$a_{2} x+b_{2} y=c_{2}$
For infinitely many solution
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
Here
$\frac{2}{2 b+1}=\frac{2 a+5}{9}=\frac{5}{15}$
Consider the following
$\frac{2 a+5}{9}=\frac{5}{15}$
$30 a+75=45$
$30 a=-30$
$a=-1$
Again consider
$\frac{2}{2 b+1}=\frac{5}{15}$
$10 b+5=30$
$10 b=25$
$b=\frac{5}{2}$
Hence for $a=-1$ and $b=\frac{5}{2}$ the system of equation has infinitely many solution.
(iii) GIVEN:
$(a-1) x+3 y=2$
$6 x+(1-2 b) y=6$
To find: To determine for what value of k the system of equation has infinitely many solutions
We know that the system of equations
$a_{1} x+b_{1} y=c_{1}$
$a_{2} x+b_{2} y=c_{2}$
For infinitely many solution
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
Here
$\frac{(a-1)}{6}=\frac{3}{(1-2 b)}=\frac{2}{6}$
Consider the following
$\frac{3}{(1-2 b)}=\frac{2}{6}$
$2-4 b=18$
$-4 b=16$
$b=-4$
Again consider
$\frac{(a-1)}{6}=\frac{2}{6}$
$6 a-6=12$
$6 a=18$
$a=3$
Hence for $a=3$ and $b=-4$ the system of equation has infinitely many solution.
(iv) GIVEN:
$3 x+4 y=12$
$(a+b) x+2(a-b) y=5 a-1$
To find: To determine for what value of k the system of equation has infinitely many solutions
We know that the system of equations
$a_{1} x+b_{1} y=c_{1}$
$a_{2} x+b_{2} y=c_{2}$
For infinitely many solution
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
Here
$\frac{3}{(a+b)}=\frac{4}{2(a-b)}=\frac{12}{5 a-1}$
Consider the following
$\frac{4}{2(a-b)}=\frac{12}{5 a-1}$
$24 a-24 b=20 a-4$
$4 a-24 b=-4$....$\ldots(1)$
Again consider
$\frac{3}{(a+b)}=\frac{12}{5 a-1}$
$12 a+12 b=15 a-3$
$3 a-12 b=3 \ldots \ldots(2)$
Multiplying eq. (2) by 2 and subtracting eq. (1) from eq. 2
$2 a=10$
$a=5$
Substituting the value of ‘a’ in eq. (2) we get
$15-12 b=3$
$-12 b=-12$
$b=1$
Hence for $a=5$ and $b=1$ the system of equation has infinitely many solution.
(v) GIVEN:
$2 x+3 y=7$
$(a-b) x+(a+b) y=3 a+b-2$
To find: To determine for what value of k the system of equation has infinitely many solutions
We know that the system of equations
$a_{1} x+b_{1} y=c_{1}$
$a_{2} x+b_{2} y=c_{2}$
For infinitely many solution
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
Here
$\frac{2}{(a-b)}=\frac{3}{(a+b)}=\frac{7}{3 a+b-2}$
Consider the following
$\frac{3}{(a+b)}=\frac{7}{3 a+b-2}$
$6 a+2 b-4=7 a-7 b$
$a-9 b=-4 \ldots \ldots$ (2)
Multiplying eq. (2) by 2 and subtracting eq. (1) from eq. (2)
$-14 b=-14$
$b=1$
Substituting the value of b in eq. (2) we get
$a-9=-4$
$a=5$
Hence for $a=5$ and $b=1$ the system of equation has infinitely many solution.
(vi) GIVEN:
$2 x+3 y-7=0$
$(a-1) x+(a+1) y=3 a-1$
To find: To determine for what value of k the system of equation has infinitely many solutions
Rewrite the given equations
$2 x+3 y-7=0$
$(a-1) x+(a+1) y=3 a-1$
We know that the system of equations
$a_{1} x+b_{1} y=c_{1}$
$a_{2} x+b_{2} y=c_{2}$
For infinitely many solution
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
Here
$\frac{2}{(a-1)}=\frac{3}{(a+1)}=\frac{7}{3 a-1}$
Consider the following
$\frac{3}{(a+1)}=\frac{7}{3 a-1}$
$9 a-3=7 a+7$
$2 a=10$
$a=5$
Hence for $a=5$ the system of equation have infinitely many solutions.
(vii) GIVEN :
$2 x+3 y=7$
$(a-1) x+(a+2) y=3 a$
To find: To determine for what value of k the system of equation has infinitely many solutions
We know that the system of equations
$a_{1} x+b_{1} y=c_{1}$
$a_{2} x+b_{2} y=c_{2}$
For infinitely many solution
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
Here
$\frac{2}{(a-1)}=\frac{3}{(a+2)}=\frac{7}{3 a}$
Consider the following
$\frac{3}{(a+2)}=\frac{7}{3 a}$
$9 a=7 a+14$
$2 a=14$
$a=7$
Hence for $a=7$ the system of equation have infinitely many solutions.
(viii) Given:
$x+2 y=1$
$(a-b) x+(a+b) y=a+b-2$
We know that the system of equations
$a_{1} x+b_{1} y=c_{1}$
$a_{2} x+b_{2} y=c_{2}$
has infinitely many solutions if
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
So,
$\frac{1}{a-b}=\frac{2}{a+b}=\frac{1}{a+b-2}$
$\Rightarrow \frac{1}{a-b}=\frac{2}{a+b}$ and $\frac{2}{a+b}=\frac{1}{a+b-2}$
$\Rightarrow a+b=2 a-2 b$ and $2 a+2 b-4=a+b$
$\Rightarrow a=3 b$ and $a+b=4$
$\Rightarrow a-3 b=0$ and $a+b=4$
Solving these two equations, we get
$-4 b=-4$
$\Rightarrow b=1$
Putting $b=1$ in $a+b=4$, we get
a = 3
(ix) Given:
$2 x+3 y=7$
$2 a x+a y=28-b y$
$\Rightarrow 2 a x+(a+b) y=28$
We know that the system of equations
$a_{1} x+b_{1} y=c_{1}$
$a_{2} x+b_{2} y=c_{2}$
has infinitely many solutions if
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\therefore \frac{2}{2 a}=\frac{3}{a+b}=\frac{7}{28}$
$\Rightarrow \frac{1}{a}=\frac{3}{a+b}=\frac{1}{4}$
$\Rightarrow \frac{1}{a}=\frac{3}{a+b}$ and $\frac{3}{a+b}=\frac{1}{4}$
Now,
$\frac{1}{a}=\frac{3}{a+b}$
$\Rightarrow a+b=3 a$
$\Rightarrow b=2 a$...$(1)$
Also, $\frac{3}{a+b}=\frac{1}{4}$
$\Rightarrow a+b=12 \quad \ldots \ldots(2)$
Solving (1) and (2), we get
$a=4$ and $b=8$