Find the values of $a$ and $b$ if the The Slope of the tangent to the curve $x y+a x+b y=2$ at $(1,1)$ is 2 .
Given:
The Slope of the tangent to the curve $x y+a x+b y=2$ at $(1,1)$ is 2
First, we will find The Slope of tangent
we use product rule here,
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}(U V)=U \times \frac{\mathrm{dV}}{\mathrm{dx}}+\mathrm{V} \times \frac{\mathrm{dU}}{\mathrm{dx}}$
$\Rightarrow x y+a x+b y=2$
$\Rightarrow x \times \frac{d}{d x}(y)+y \times \frac{d}{d x}(x)+a \frac{d}{d x}(x)+b \frac{d}{d x}(y)+=\frac{d}{d x}(2)$
$\Rightarrow x \frac{d y}{d x}+y+a+b \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}(x+b)+y+a=0$
$\Rightarrow \frac{d y}{d x}(x+b)=-(a+y)$
$\Rightarrow \frac{d y}{d x}=\frac{-(a+y)}{x+b}$
since, The Slope of the tangent to the curve $x y+a x+b y=2$ at $(1,1)$ is 2
i.e, $\frac{\mathrm{dy}}{\mathrm{dx}}=2$
$\Rightarrow\left\{\frac{-(a+y)}{x+b}\right\}(x=1, y=1)=2$
$\Rightarrow \frac{-(a+1)}{1+b}=2$
$\Rightarrow-a-1=2(1+b)$
$\Rightarrow-a-1=2+2 b$
$\Rightarrow a+2 b=-3 \ldots(1)$
Also, the point $(1,1)$ lies on the curve $x y+a x+b y=2$, we have
$1 \times 1+a \times 1+b \times 1=2$
$\Rightarrow 1+a+b=2$
$\Rightarrow a+b=1 \ldots(2)$
from $(1) \&(2)$, we get
\begin{tabular}{c}
$a+2 b=-3$ \\
$a+b=1$ \\
$-\quad-\quad-$ \\
\hline$b=-4$
\end{tabular}
substitute $b=-4$ in $a+b=1$
$a-4=1$
$\Rightarrow a=5$
So the value of $a=5 \& b=-4$