If $\left(x+\frac{1}{x}\right)=4$, find the values of
(i) $\left(x^{2}+\frac{1}{x^{2}}\right)$ and
(ii) $\left(x^{4}+\frac{1}{x^{4}}\right)$.
(i) $\left(x+\frac{1}{x}\right)=4$
Squaring both the sides:
$\Rightarrow\left(x+\frac{1}{x}\right)^{2}=(4)^{2}$
$\Rightarrow\left(x^{2}+\frac{1}{x^{2}}+2(x)\left(\frac{1}{x}\right)\right)=16$
$\Rightarrow\left(x^{2}+\frac{1}{x^{2}}\right)+2=16$
$\Rightarrow\left(x^{2}+\frac{1}{x^{2}}\right)=16-2$
$\Rightarrow\left(x^{2}+\frac{1}{x^{2}}\right)=14$
Therefore, the value of $x^{2}+\frac{1}{x^{2}}$ is 14 .
$\left(x^{2}+\frac{1}{x^{2}}\right)=14$
Squaring both the sides:
$\Rightarrow\left(x^{4}+\frac{1}{x^{4}}+2\left(x^{2}\right)\left(\frac{1}{x^{2}}\right)\right)=(14)^{2}$
$\Rightarrow\left(x^{4}+\frac{1}{x^{4}}\right)+2=196$
$\Rightarrow\left(x^{4}+\frac{1}{x^{4}}\right)=196-2$
$\Rightarrow\left(x^{4}+\frac{1}{x^{4}}\right)=194$
Therefore, the value of $x^{4}+\frac{1}{x^{4}}$ is 194 .