Question:
Find the values $k$ for which of roots of $9 x^{2}+8 k x+16=0$ are real and equal
Solution:
Given:
$9 x^{2}+8 k x+16=0$
Here,
$a=9, b=8 k$ and $c=16$
It is given that the roots of the equation are real and equal; therefore, we have:
$D=0$
$\Rightarrow\left(b^{2}-4 a c\right)=0$
$\Rightarrow(8 k)^{2}-4 \times 9 \times 16=0$
$\Rightarrow 64 k^{2}-576=0$
$\Rightarrow 64 k^{2}=576$
$\Rightarrow k^{2}=9$
$\Rightarrow k=\pm 3$
$\therefore k=3$ or $\mathrm{k}=-3$