Find the value of x in each of the following :
$\cos 2 x=\cos 60^{\circ} \cos 30^{\circ}+\sin 60^{\circ} \sin 30^{\circ}$
We have,
$\cos 2 x=\cos 60^{\circ} \cos 30^{\circ}+\sin 60^{\circ} \sin 30^{\circ}$
Now we know that
$\sin 60^{\circ}=\cos 30^{\circ}=\frac{\sqrt{3}}{2}$ and $\sin 30^{\circ}=\cos 60^{\circ}=\frac{1}{2}$
Now by substituting above values in equation (1), we get,
$\cos 2 x=\cos 60^{\circ} \cos 30^{\circ}+\sin 60^{\circ} \sin 30^{\circ}$
$\cos 2 x=\frac{1}{2} \times \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2} \times \frac{1}{2}$
$=\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{4}$
$=\frac{2 \sqrt{3}}{4}$
Therefore,
$\cos 2 x=\frac{2 \sqrt{3}}{4}$
Now $\frac{2 \sqrt{3}}{4}$ gets reduced to $\frac{\sqrt{3}}{2}$
Therefore,
$\cos 2 x=\frac{\sqrt{3}}{2} \ldots \ldots(2)$
Since,
$\cos 30^{\circ}=\frac{\sqrt{3}}{2}$ …… (3)
Therefore by comparing equation (2) and (3)
We get,
$2 x=30^{\circ}$
$\Rightarrow x=\frac{30^{\circ}}{2}$
$\Rightarrow x=15^{\circ}$
Therefore,
$x=15^{\circ}$