Question:
Find the value of x in each of the following :
$\sqrt{3} \sin x=\cos x$
Solution:
We have,
$\sqrt{3} \sin x=\cos x$
Now by cross multiplying we get,
$\sqrt{3} \sin x=\cos x$
$\Rightarrow \frac{\sin x}{\cos x}=\frac{1}{\sqrt{3}}$.....(1)
Now we know that
$\frac{\sin x}{\cos x}=\tan x$....(2)
Therefore from equation (1) and (2)
We get,
$\tan x=\frac{1}{\sqrt{3}}$.....(3)
Since,
$\tan 30^{\circ}=\frac{1}{\sqrt{3}}$....(4)
Therefore, by comparing equation (3) and (4) we get,
$x=30^{\circ}$
Therefore,
$x=30^{\circ}$