Find the value of $k$ if $f(x)$ is continuous at $x=\pi / 2$, where
$f(x)=\left\{\begin{array}{rr}\frac{k \cos x}{\pi-2 x}, & x \neq \pi / 2 \\ 3 & , x=\pi / 2\end{array}\right.$
Given:
$f(x)=\left\{\begin{array}{l}\frac{k \cos x}{\pi-2 x}, x \neq \frac{\pi}{2} \\ 3, x=\frac{\pi}{2}\end{array}\right.$
If $f(x)$ is continuous at $x=\frac{\pi}{2}$, then
$\lim _{x \rightarrow \frac{\pi}{2}} f(x)=f\left(\frac{\pi}{2}\right)$
$\Rightarrow \lim _{x \rightarrow \frac{\pi}{2}} \frac{k \cos x}{\pi-2 x}=3$ ....(1)
Putting $\frac{\pi}{2}-x=h$, we get
$\lim _{x \rightarrow \frac{\pi}{2}} \frac{k \cos x}{\pi-2 x}=\lim _{h \rightarrow 0} \frac{k \cos \left(\frac{\pi}{2}-h\right)}{\pi-2\left(\frac{\pi}{2}-h\right)}$
From (1), we have
$\lim _{h \rightarrow 0} \frac{k \cos \left(\frac{\pi}{2}-h\right)}{\pi-2\left(\frac{\pi}{2}-h\right)}=3$
$\Rightarrow \lim _{h \rightarrow 0} \frac{k \sin h}{2 h}=3$
$\Rightarrow \lim _{h \rightarrow 0} \frac{k \sin h}{h}=6$
$\Rightarrow k \lim _{h \rightarrow 0} \frac{\sin h}{h}=6$
$\Rightarrow k \times 1=6$
$\Rightarrow k=6$
Hence, for $k=6, f(x)$ is continuous at $x=\frac{\pi}{2}$.