Find the value of k for which the points A(-2, 3), B(1, 2) and C(k, 0) are collinear.
Given: The points are $A(-5,1), B(1,2)$ and $C(k, 0)$
To find: value of k
$A B=\sqrt{(1+5)^{2}+(2-1)^{2}}=\sqrt{36+1}$
$=\sqrt{37}$ units
$B C=\sqrt{(k-1)^{2}+4}$
$A C=\sqrt{(k+5)^{2}+1}$
Since the points are collinear, $A B+B C=A C$
$\Rightarrow \sqrt{37}+\sqrt{(\mathrm{k}-1)^{2}+4}=\sqrt{(\mathrm{k}+5)^{2}+1}$
Squaring both sides and rearranging,
$\Rightarrow 37+(\mathrm{k}-1)^{2}+4-(\mathrm{k}+5)^{2}-1=-2 \sqrt{37} \sqrt{(\mathrm{k}-1)^{2}+4}$
On simplifying,
$\Rightarrow 40-2 \mathrm{k}+1-10 \mathrm{k}-25=-2 \sqrt{37} \sqrt{(\mathrm{k}-1)^{2}+4}$
$\Rightarrow 16-12 \mathrm{k}=-2 \sqrt{37} \sqrt{(\mathrm{k}-1)^{2}+4}$
$\Rightarrow 8-6 \mathrm{k}=-\sqrt{37} \sqrt{(\mathrm{k}-1)^{2}+4}$
Squaring both sides,
$\Rightarrow 64-96 k+36 k^{2}=37 \times\left(k^{2}-2 k+5\right)$
$\Rightarrow 64-96 k+36 k^{2}=37 k^{2}-74 k+185$
Rearranging,
$\Rightarrow 37 k^{2}-74 k+185=36 k^{2}-96 k+64$
$\Rightarrow \mathrm{k}^{2}+22 \mathrm{k}+121=0$
$\Rightarrow(\mathrm{k}+11)^{2}=0$
$\Rightarrow \mathrm{k}=-11$
Therefore, the value of k for which the points A, B and C are collinear is –11.