Find the value of if $sin ^{-1} x=y$, then

Question:

Find the value of if $\sin ^{-1} x=y$, then

(A) $0 \leq y \leq \pi$ (B) $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$

(C) $0

Solution:

It is given that $\sin ^{-1} x=y$.

We know that the range of the principal value branch of $\sin ^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Therefore, $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$.

Leave a comment