Find the value of c prescribed by Lagrange's mean value theorem for the function
$f(x)=\sqrt{x^{2}-4}$ defined on $[2,3]$
We have
$f(x)=\sqrt{x^{2}-4}$
Here, $f(x)$ will exist, if
$x^{2}-4 \geq 0$
$\Rightarrow x \leq-2$ or $x \geq 2$
Since for each $x \in[2,3]$, the function $f(x)$ attains a unique definite value, $f(x)$ is continuous on $[2,3]$.
Also, $f^{\prime}(x)=\frac{1}{2 \sqrt{x^{2}-4}}(2 x)=\frac{x}{\sqrt{x^{2}-4}}$ exists for all $x \in(2,3)$.
So, $f(x)$ is differentiable on $(2,3)$.
Thus, both the conditions of lagrange's theorem are satisfied.
Consequently, there exists $c \in(2,3)$ such that
$f^{\prime}(c)=\frac{f(3)-f(2)}{3-2}=\frac{f(3)-f(2)}{1}$
Now,
$f(x)=\sqrt{x^{2}-4}$
$f^{\prime}(x)=\frac{x}{\sqrt{x^{2}-4}}, f(3)=\sqrt{5}, f(2)=0$
$\therefore f^{\prime}(x)=\frac{f(3)-f(2)}{3-2}$
$\Rightarrow \frac{x}{\sqrt{x^{2}-4}}=\sqrt{5}$
$\Rightarrow \frac{x^{2}}{x^{2}-4}=5$
$\Rightarrow x^{2}=5 x^{2}-20$
$\Rightarrow 4 x^{2}=20$
$\Rightarrow x=\pm \sqrt{5}$
Thus, $c=\sqrt{5} \in(2,3)$ such that $f^{\prime}(c)=\frac{f(3)-f(2)}{3-2}$
Hence, Lagrange's theorem is verified.