Find the value of $a, b, c$, and $d$ from the equation:
$\left[\begin{array}{ll}a-b & 2 a+c \\ 2 a-b & 3 c+d\end{array}\right]=\left[\begin{array}{ll}-1 & 5 \\ 0 & 13\end{array}\right]$
$\left[\begin{array}{ll}a-b & 2 a+c \\ 2 a-b & 3 c+d\end{array}\right]=\left[\begin{array}{ll}-1 & 5 \\ 0 & 13\end{array}\right]$
As the two matrices are equal, their corresponding elements are also equal.
Comparing the corresponding elements, we get:
a − b = −1 … (1)
2a − b = 0 … (2)
2a + c = 5 … (3)
3c + d = 13 … (4)
From (2), we have:
b = 2a
Then, from (1), we have:
$a-2 a=-1$
$\Rightarrow a=1$
$\Rightarrow b=2$
Now, from (3), we have:
2 ×1 + c = 5
$\Rightarrow c=3$
From (4) we have:
$3 \times 3+d=13$
$\Rightarrow 9+d=13 \Rightarrow d=4$
$\therefore a=1, b=2, c=3$, and $d=4$