Question:
If $x=9-4 \sqrt{5}$, find the value of $x^{2}+\frac{1}{x^{2}}$.
Solution:
$x=9-4 \sqrt{5}$ .......(1)
$\Rightarrow \frac{1}{x}=\frac{1}{9-4 \sqrt{5}}$
$\Rightarrow \frac{1}{x}=\frac{1}{9-4 \sqrt{5}} \times \frac{9+4 \sqrt{5}}{9+4 \sqrt{5}}$
$\Rightarrow \frac{1}{x}=\frac{9+4 \sqrt{5}}{9^{2}-(4 \sqrt{5})^{2}}$
$\Rightarrow \frac{1}{x}=\frac{9+4 \sqrt{5}}{81-80}$
$\Rightarrow \frac{1}{x}=9+4 \sqrt{5} \quad \ldots(2)$
Adding (1) and (2), we get
$x+\frac{1}{x}=9-4 \sqrt{5}+9+4 \sqrt{5}$
$\Rightarrow x+\frac{1}{x}=18$
Squaring on both sides, we get
$\left(x+\frac{1}{x}\right)^{2}=18^{2}$
$\Rightarrow x^{2}+\frac{1}{x^{2}}+2 \times x \times \frac{1}{x}=324$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=324-2=322$
Thus, the value of $x^{2}+\frac{1}{x^{2}}$ is 322 .