Question:
If $f(x)=x^{2}$, find the value of $\frac{\{(f)(1.1)-f(1)\}}{(1.1)-1}$
Solution:
Given: $f(x)=x^{2}$
Firstly, we find the f(1.1)
Putting the value of x = 1.1 in the given eq., we get
$f(1.1)=(1.1)^{2}$
$\Rightarrow f(1.1)=1.21$
Similarly,
$f(1)=(1)^{2}$
$\Rightarrow f(1)=1$
Putting the value of f(1.1) and f(1) in eq. (i), we get
$\frac{\mathrm{f}(1.1)-\mathrm{f}(1)}{(1.1-1)}=\frac{1.21-1}{1.1-1}=\frac{0.21}{0.1}=2.1$
Hence, the value of $\frac{\mathrm{f}(1.1)-\mathrm{f}(1)}{(1.1-1)}=2.1$