Question:
Find the value of
$\sec \left(\frac{-25 \pi}{3}\right)$
Solution:
To find: Value of $\sec \left(-\frac{25 \pi}{3}\right)$
We have,
$\sec \left(-\frac{25 \pi}{3}\right)=\sec \frac{25 \pi}{3}$
$[\because \sec (-\theta)=\sec \theta]$
Putting π = 180°
$=\sec \frac{25 \times 180}{3}$
$=\sec \left[25 \times 60^{\circ}\right]$
$=\sec \left[1500^{\circ}\right]$
$=\sec \left[90^{\circ} \times 16+60^{\circ}\right]$
Clearly, $1500^{\circ}$ is in Ist Quadrant and the multiple of $90^{\circ}$ is even
$=\sec 60^{\circ}$
$=2\left[\because \sec 60^{\circ}=2\right]$