Question:
Find the value of
$\cos \left(\frac{17 \pi}{2}\right)$
Solution:
To find: Value of $\cos \frac{17 n}{2}$
$\cos \frac{17 \pi}{2}=\cos \left(8 \pi+\frac{1}{2} \pi\right)$
$=\cos \left(4 \times(2 \pi)+\frac{1}{2} \pi\right)$
Value of $\cos x$ repeats after an interval of $2 \pi$, hence ignoring $4 \times(2 \pi)$
$=\cos \left(\frac{1}{2} \pi\right)$
$=\cos \left(\frac{1}{2} \times 180^{\circ}\right)$
$=\cos 90^{\circ}$
$=0\left[\because \cos 90^{\circ}=1\right]$