Find the value of (5x6) × (−1.5x2y3) × (−12xy2) when x = 1, y = 0.5.
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., $a^{m} \times a^{n}=a^{m+n}$.
We have:
$\left(5 x^{6}\right) \times\left(-1.5 x^{2} y^{3}\right) \times\left(-12 x y^{2}\right)$
$=\{5 \times(-1.5) \times(-12)\} \times\left(x^{6} \times x^{2} \times x\right) \times\left(y^{3} \times y^{2}\right)$
$=\{5 \times(-1.5) \times(-12)\} \times\left(x^{6+2+1}\right) \times\left(y^{3+2}\right)$
$=90 x^{9} y^{5}$
$\therefore\left(5 x^{6}\right) \times\left(-1.5 x^{2} y^{3}\right) \times\left(-12 x y^{2}\right)=90 x^{9} y^{5}$
Substituting x = 1 and y = 0.5 in the result, we get:
$90 x^{9} y^{5}$
$=90(1)^{9}(0.5)^{5}$
$=90 \times 1 \times 0.03125$
$=2.8125$
Thus, the answer is 2.8125.