Question:
Find the value of
$\sin \left(\frac{31 \pi}{3}\right)$
Solution:
To find: Value of $\sin \frac{31 \pi}{3}$
$\sin \frac{31 \pi}{3}=\sin \left(10 \pi+\frac{1}{3} \pi\right)$
$=\sin \left(5 \times(2 \pi)+\frac{1}{3} \pi\right)$
Value of $\sin x$ repeats after an interval of $2 \pi$, hence ignoring $5 \times(2 \pi)$
$=\sin \left(\frac{1}{3} \pi\right)$
$=\sin \left(\frac{1}{3} \times 180^{\circ}\right)$
$=\sin 60^{\circ}$
$=\frac{\sqrt{3}}{2}\left[\because \sin 60^{\circ}=\frac{\sqrt{3}}{2}\right]$