Question:
Find the value
$a^{3}+8 b^{3}+64 c^{3}-24 a b c$
Solution:
$=(a)^{3}+(2 b)^{3}+(4 c)^{3}-3 \times a \times 2 b \times 4 c$
$=(a+2 b+4 c)\left(a^{2}+(2 b)^{2}+(4 c)^{2}-a \times 2 b-2 b \times 4 c-4 c \times a\right)$
$\left[\therefore a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)\right]$
$=(a+2 b+4 c)\left(a^{2}+4 b^{2}+16 c^{2}-2 a b-8 b c-4 a c\right)$
$\therefore a^{3}+8 b^{3}+64 c^{3}-24 a b c$
$=(a+2 b+4 c)\left(a^{2}+4 b^{2}+16 c^{2}-2 a b-8 b c-4 a c\right)$