Find the value
i. $\frac{173 \times 173 \times 173+127 \times 127 \times 127}{173 \times 173-173 \times 127+127 \times 127}$
ii. $\frac{1.2 \times 1.2 \times 1.2-0.2 \times 0.2 \times 0.2}{1.2 \times 1.2+1.2 \times 0.2+0.2 \times 0.2}$
iii. $\frac{155 \times 155 \times 155-55 \times 55 \times 55}{155 \times 155+155 \times 55+55 \times 55}$
i. $\frac{173 \times 173 \times 173+127 \times 127 \times 127}{173 \times 173-173 \times 127+127 \times 127}$
$=\frac{173^{3}+127^{3}}{173^{2}-173 \times 127+1272}$
$=\frac{(173+127)\left(173^{2}-173 \times 127+127^{2}\right)}{173^{2}-173 \times 127+127^{2}}$
$\therefore\left[a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)\right]$
= (173 + 127)
= 300
ii. $\frac{1.2 \times 1.2 \times 1.2-0.2 \times 0.2 \times 0.2}{1.2 \times 1.2+1.2 \times 0.2+0.2 \times 0.2}$
$=\frac{1.2^{3}-0.23}{1.2^{2}+1.2 \times 0.2+0.2^{2}}$
$=\frac{(1.2-0.2)\left((1.2)^{2}+1.2 \times 0.2+(0.2)^{2}\right)}{1.2^{2}+1.2 \times 0.2+0.2^{2}}$
$\left[\therefore a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)\right]$
= (1.2 − 0.2)
= 1.0
iii. $\frac{155 \times 155 \times 155-55 \times 55 \times 55}{155 \times 155+155 \times 55+55 \times 55}$
$=\frac{155^{3}-55^{3}}{155^{2}+155 \times 55+55^{2}}$
$=\frac{(155-55)\left(155^{2}+155 \times 55+55^{2}\right)}{155^{2}+155 \times 55+55^{2}}$
$\left[\therefore a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)\right]$
= (155 - 55)
= 100