Find the value

Question:

Evaluate

$\lim _{x \rightarrow 3}\left(\frac{x^{2}+9}{x+3}\right)$

 

Solution:

To evaluate:

$\lim _{x \rightarrow 3} \frac{x^{2}+9}{x+3}$

Formula used:

We have,

$\lim _{x \rightarrow a} f(x)=f(a)$

As $x \rightarrow 3$, we have

$\lim _{x \rightarrow 3} \frac{x^{2}+9}{x+3}=\frac{3^{2}+9}{3+3}$

$\lim _{x \rightarrow 3} \frac{x^{2}+9}{x+3}=\frac{18}{6}$

$\lim _{x \rightarrow 3} \frac{x^{2}+9}{x+3}=3$

Thus, the value of $\lim _{x \rightarrow 3} \frac{x^{2}+9}{x+3}$ is $3 .$

 

Leave a comment