Find the value

Question:

Find the value

$x^{2}-\sqrt{3} x-6$

Solution:

Splitting the middle term,

$=x^{2}-2 \sqrt{3} x+\sqrt{3} x-6$

$[\therefore-\sqrt{3}=-2 \sqrt{3}+\sqrt{3}$ also $-2 \sqrt{3} \times \sqrt{3}=-6]$

$=x(x-2 \sqrt{3})+\sqrt{3}(x-2 \sqrt{3})$

$=(x-2 \sqrt{3})(x+\sqrt{3})$

$\therefore x^{2}-\sqrt{3} x-6=(x-2 \sqrt{3})(x+\sqrt{3})$

 

Leave a comment